FERTILIZER N EFFECTS ON SILAGE QUALITY OF GRASS-LEGUME AND HERB MIXTURES Susanne Ohl, Beeke Ehlers & Uzair Ahmad Faraz ### Introduction - Climate change adversely impacts grassland yield, stability and feed availability. - Plants grown in mixtures respond less strongly to drought stress. - Herbal mixtures not only have good forage qualities but are also suitable for preservation as silage. # Objectives To evaluate the silage quality of herbal mixtures grown under different nitrogen fertilization levels and assess the effects of a biological silage additive (SA) containing homo- and heterofermentative lactic acid bacteria. ### Material & Methods - Base: Plot trial in Northern Germany (2020-2022) with different forage types and nitrogen fertilization levels 40 (N1) & 220 kg N/ha/year (N2) - Chosen forage for ensiling: 3rd cut 2022 of Mix 1 (perennial ryegrass & white clover) and Mix 2 (ryegrass, white clover, ribwort plantain & chicory) sown as mixed and strip variants - Ensiling of wilted forage (35 % DM) in glass jars (n=3) as untreated control (CON) and inoculated with SA (*L. plantarum, P. pentosaceus, L. buchneri, L. kefiri*) - Analyses of fresh forages: nutritional value, sugar, buffering capacity, nitrate, fermentability coefficient - Analyses of silages: nutritional value, sugar, DM loss, fermentation & hygienic quality, aerobic stability ## **Results & Discussion** - 3rd cut 2022: - \rightarrow DM yield between 9.3 dt/ha (Mix 2, N1) 11.5 dt/ha (Mix 1, N2) - > growth with the highest proportion of clover and herbs in the trial period - Fresh forages: free of nitrate (< 0.3 g/kg DM), sugar ≥ 100 g/kg DM, mean buffering capacity 38 51 g lactic acid/kg DM, due to fermentability coefficient ≥ 48 classified as easy to ensile - ↓ N fertilization levels: ↑ proportion of white clover, ↑ crude protein, ↑ buffering capacity, ↓ sugar (Tab. 1) - ↑ N fertilization levels: ↑ proportion of ryegrass & ribwort plantain, ↓ crude protein, ↑ sugar, ↑ energy - High silage quality for both mixtures: strong acidification, minor DM loss ($\leq 4.6\%$), minor protein degradation, no butyric acid, no molds - SA: Inoculation led to faster pH decrease, ↑ lactic acid content - Aerobic storage: most silages without reheating (exception Mix 1, N1, SA) but nevertheless sometimes signs of spoilage ### **Unexpected finding:** > ↑ lactic acid content in mixtures with lower fertilization – similar findings in unfertilized multispecies mixtures reported at literature # Conclusion The level of nitrogen fertilization influenced the composition of grass-legume (and herb) mixtures and their nutritional value. The successfully wilted mixtures exhibited a rapid and substantial reduction in pH, driven by efficient lactic acid production, which was further enhanced by using a biological silage additive. Adhering to good professional practices is key to producing high-quality silage from these mixtures. **Tab. 1:** Mean values (n=3) of silage quality parameters of grass-legume mixtures (Mix 1) containing additional herbs (Mix 2), cultivated with different N fertilization, after 90 days of fermentation with (SA) or without inoculation (CON). | | | MIX 1 | | | | MIX 2 | | | | |-------------------|------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | - | N1¹ | | N2 ² | | N1 | | N2 | | | Parameters | | CON | SA | CON | SA | CON | SA | CON | SA | | DM | [%] | 38.0 ^a | 35.6e | 38.0a | 38.5 ^{ab} | 36.5 ^c | 38.0 ^d | 37.8a | 38.8 ^b | | Crude ash | | 9.7a | 9.0 ^b | 8.2 ^c | 7.9 ^c | 9.4 ^a | 8.7 ^b | 7.7 ^c | 8.2 ^c | | Crude protein | | 15.5 ^a | 15.8a | 13.8 ^b | 13.5 ^b | 15.6ac | 15.6 ^c | 12.9 ^b | 13.9 ^b | | aNDFom | [% DM] | 38.4 ^a | 39.2a | 44.4 ^c | 43.7 ^c | 36.6 ^b | 37.2 ^b | 43.4 ^c | 42.9 ^c | | ADFom | | 28.0 ^a | 27.9a | 25.6 ^b | 25.0 ^c | 27.6a | 28.0 ^a | 24.7 ^b | 25.2 ^{bc} | | Sugar | | 5.8 ^a | 5.7 ^a | 10.9 ^c | 10.5 ^c | 5.6a | 4.2 ^b | 10.6 ^c | 8.8 ^d | | NEL | [MJ/kg DM] | 6.2a | 6.1 ^a | 6.6 ^c | 6.5 ^d | 6.1 ^b | 6.0 ^b | 6.5 ^{bc} | 6.5 ^{cd} | | Lactic acid |
[% DM] | 5.8 ^a | 8.4 ^b | 5.4 ^e | 7.5 ^f | 6.0 ^c | 7.7 ^d | 4.0 ^g | 6.0 ^h | | Acetic acid | | 1.9 ^a | 0.8 ^b | 1.6 ^e | 1.1^{f} | 1.4 ^c | 1.1 ^d | 1.6 ^{eg} | 1.5 ^h | | Ethanol | | 0.5 ^a | 0.7 ad | 0.5 ^a | 0.9 ^d | 0.6 ^b | 0.5 ^a | 0.5 ^a | 0.4 ^c | | pH 3 d | | 5.1 ^a | 4.2 ^b | 4.5 ^c | 4.3 e | 4.6 ^c | 4.4 ^d | 4.5 ^c | 4.5 ^c | | pH 90 d | | 4.2a | 3.9 ^b | 4.1 ^a | 3.9 ^b | 4.1 ^a | 4.0 ^d | 4.2 ^c | 4.0 ^d | 1 N1= 40 kg N/ha/year, 2 N2= 220 kg N/ha/year Dr. Susanne Ohl Landwirtschaftskammer Schleswig-Holstein, Lehr- und Versuchszentrum Futterkamp Gutshof, 24327 Blekendorf, Germany sohl@lksh.de Landwirtschaftskammer Schleswig-Holstein Uzair Ahmed Faraz Beeke Ehlers Christian-Albrechts-University of Kiel, Germany uzair.ahmedfaraz14@gmail.com