

Pufferspeicher im Gartenbau

KTBL-Arbeitskreis

"Berater und Wissenschaftler für Technik im Gartenbau"

am 20. September 2011 in Bad Laer

Wann lohnt ein Pufferspeicher?

Wie groß soll der Pufferspeicher sein?

Was kann durch einen Pufferspeicher erreicht werden?

Investitionskosten

(Primär: Einsparung an Wärmekosten)

Inhalt

- 1. Vorteile eines Pufferspeichers
- 2. Dimensionierung des Pufferspeichers
 - Wie arbeitet der Pufferspeicher?Bei welchen Betriebszuständen ist er besonders effektiv?
 - > Welche Einsparungen an Wärmekosten sind erreichbar?
 - Welche Rolle spielen die Wärmeverluste?
 Reduzierung der Wärmeverluste durch optimierte Speicherladung?
- 3. Hydraulische Einbindung und Speichermanagement
- 4. Investitionskosten für den Pufferspeichereinsatz
- 5. Gegenüberstellung von Einsparungen und Kosten

Vorteile eines Pufferspeichers

Besserer Betrieb von Feststoff-Feuerungsanlagen

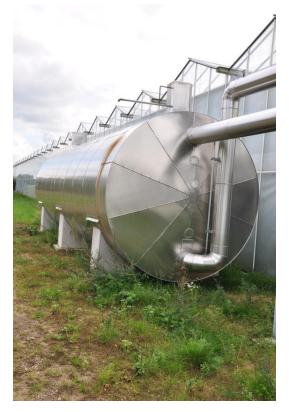
- Intervallbetrieb (längere Laufzeiten und Pausen)
- Verbessertes
 Emissionsverhalten
- Höherer Wirkungsgrad

Bessere Grundlastausnutzung

Einsparung von Wärmekosten

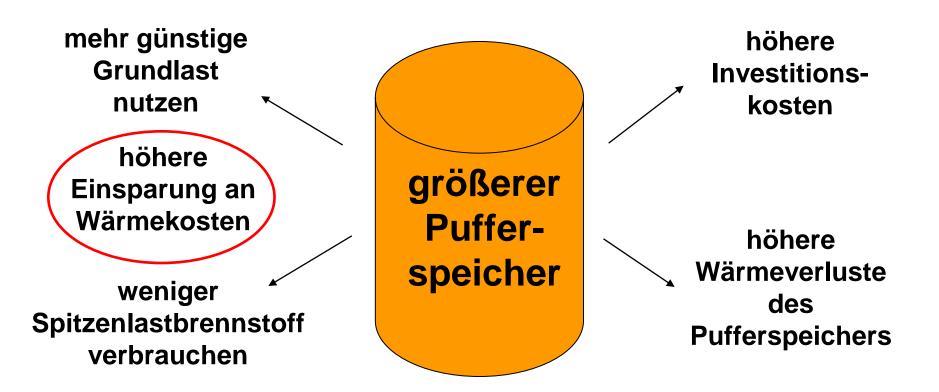
Zusätzliche Wärmeleistung

- Schnelle Bereitstellung
- Unterstützung von nicht ausreichender Spitzenlast (100 m³ bei ∆t = 20 K
 ⇔ 2.373 kWh nutzbare Wärmeleistung)

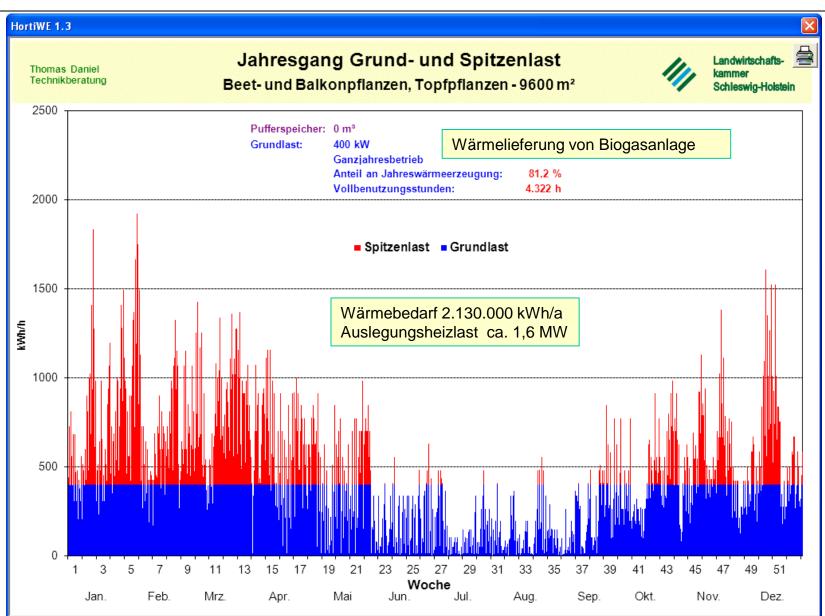

Dimensionierung des Pufferspeichers

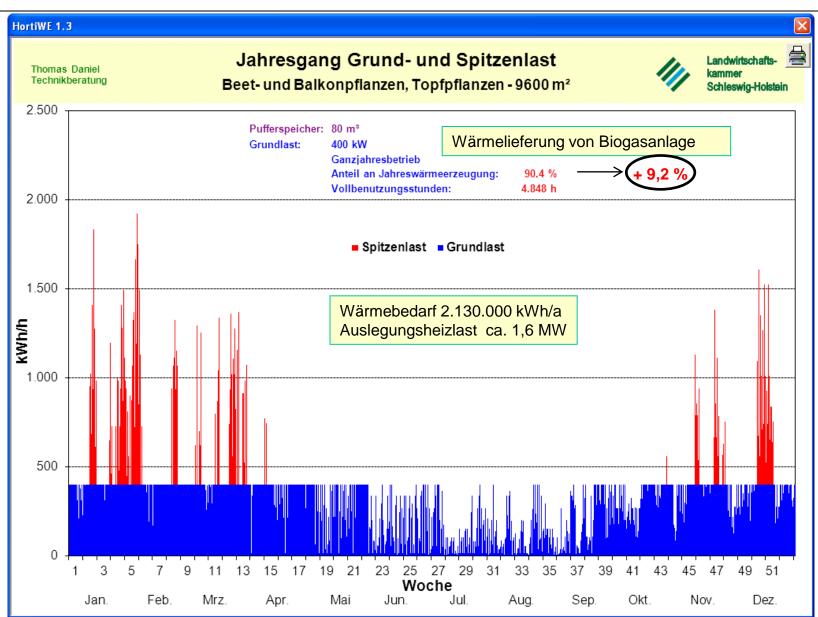
Großer Pufferspeicher?

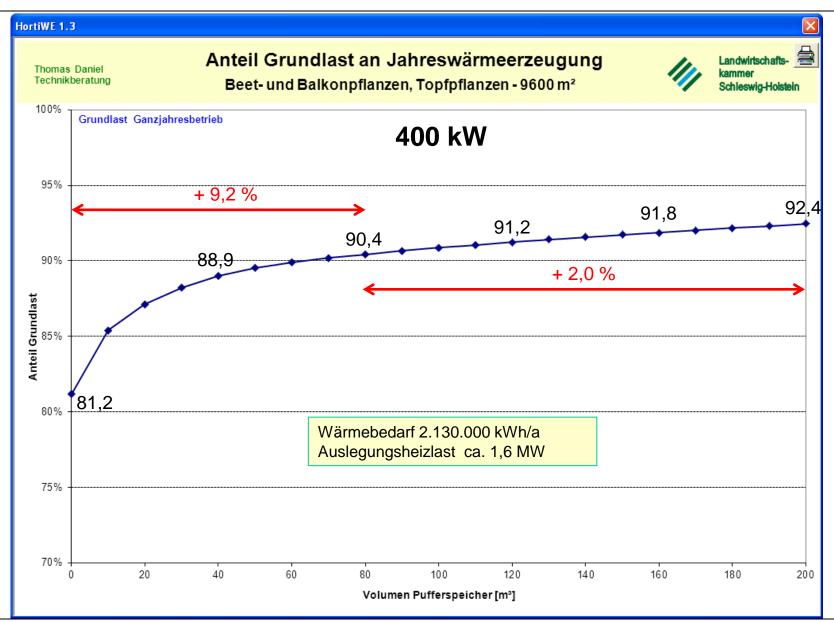
Oder reicht auch ein kleinerer Pufferspeicher?

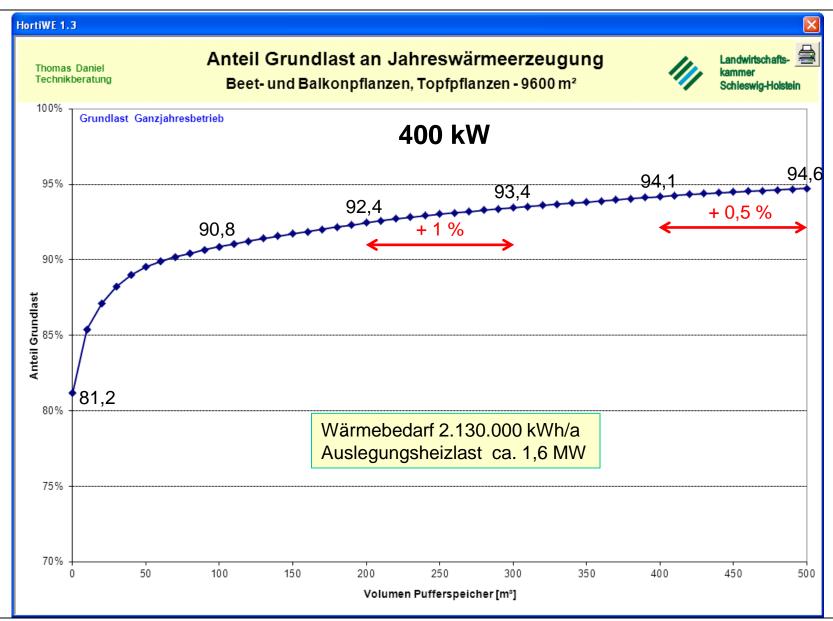


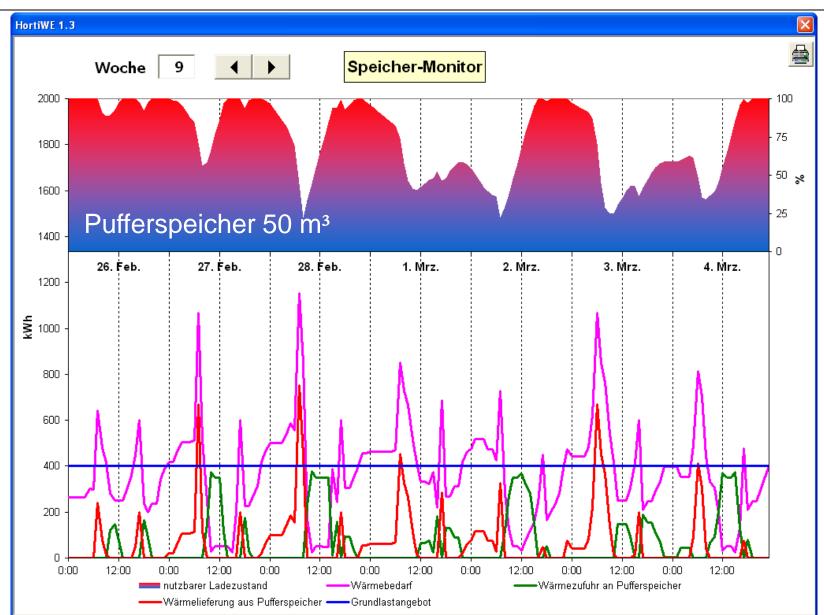
200 m³

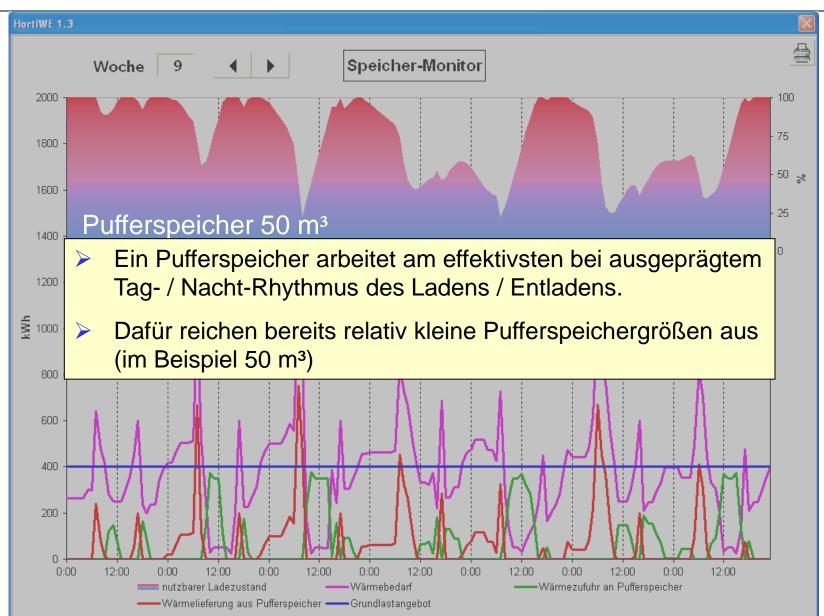

40 m³


Dimensionierung des Pufferspeichers Einflussfaktoren





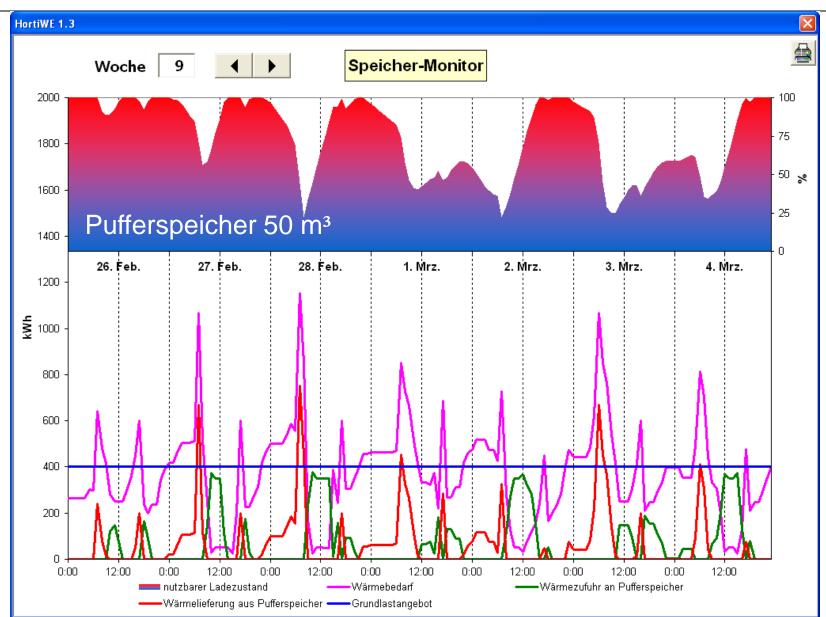




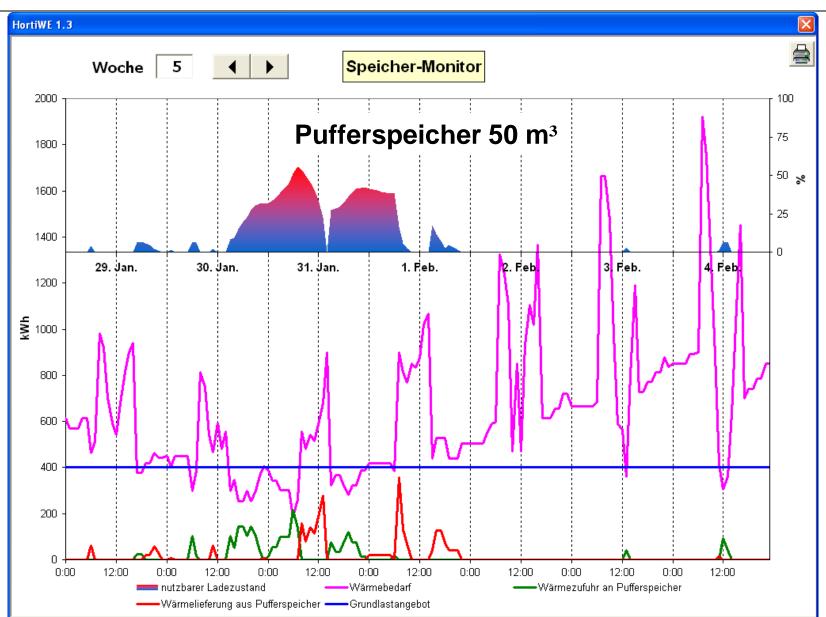
Nutzbarer Ladezustand

- abhängig von Wassertemperaturen im Speicher (mittlere Speichertemperatur) und mittlerer Heizungsrücklauftemperatur
- Bei ausgeprägtem Tag-/Nachtrhythmus des Ladens/Entladens (Beispielbetrieb 9. KW): mittlere Heizungs-RL-Temperatur 40-55 °C, wenn nachts Wärmebedarf Grundlastangebot übersteigt
- Beispiel: VL-Temp. Speicherladung 82 °C
 mittlere Heiz.-RL-Temp. 47 °C

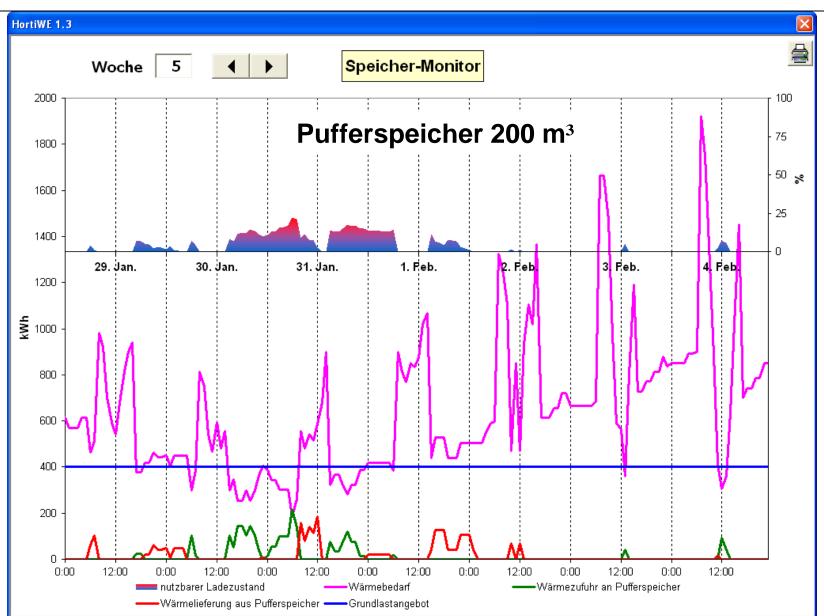
Nutzbarer Ladezustand [kWh] = 1,02 x 1,163 x 35 x Vol. Pufferspeicher in m^3

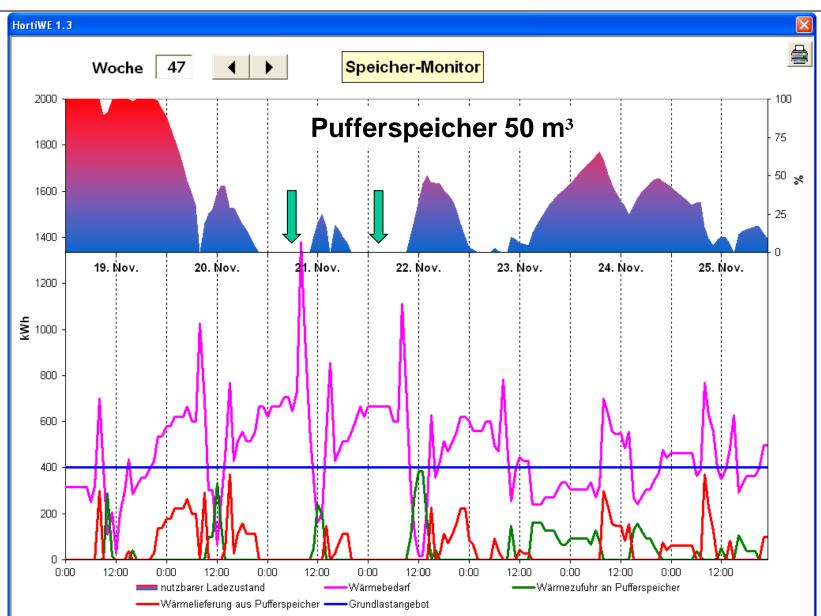

```
50 \text{ m}^3 → 2.076 \text{ kWh}

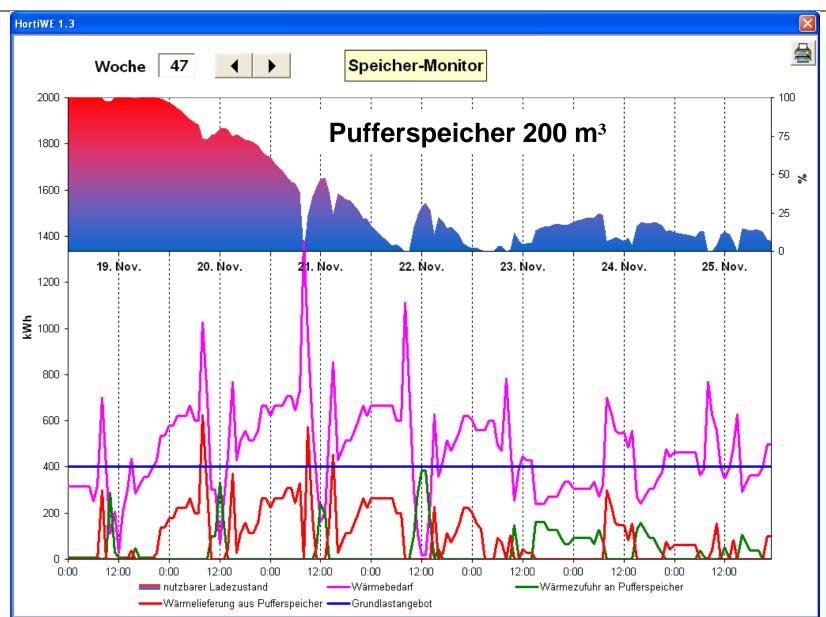
100 \text{ m}^3 → 4.152 \text{ kWh}

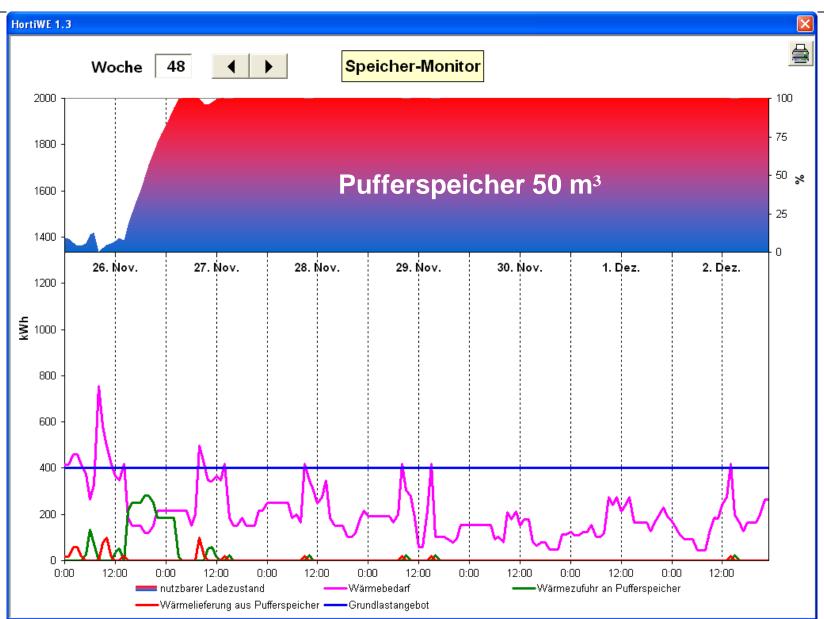

200 \text{ m}^3 → 8.304 \text{ kWh}

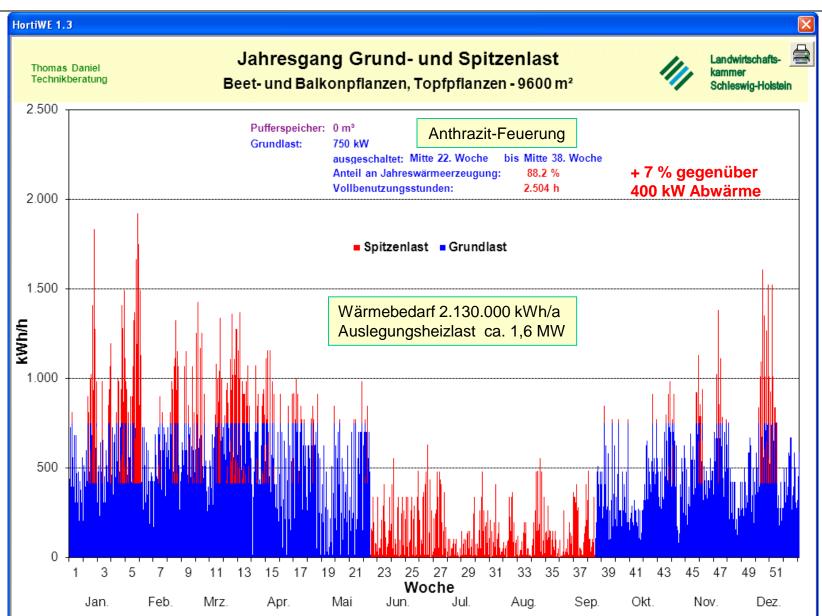
200 \text{ kW}
```

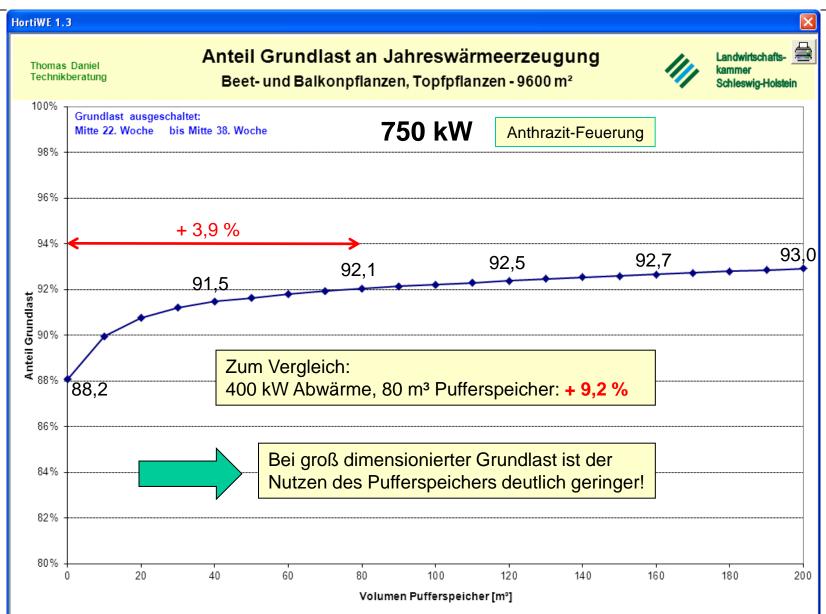












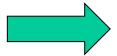
Einsparung Wärmekosten durch Pufferspeicher (€/a ohne MwSt.)*

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a

Spitzenlast	Grundlast	Volumen Pufferspeicher (m³)			
		50	100	150	200
Heizöl EL 65 ct/l	400 kW Abwärme Flat		015 → 14.917	16.214 <	
	400 kW Abwärme 2,0 ct/kWh		10.451	11.191 <	
	400 kW Holzhackschn.** 31 €/Sm³		6.354	6.714	→ 7.015
	750 kW Anthrazit 216 €/t	3.038	3.302	3.377	→ 3.406
Heizöl EL 75 ct/l	400 kW Abwärme Flat	14.887	325 → 17.212	18.709	19.965
	400 kW Abwärme 2,0 ct/kWh	11.173	12.746	13.685	14.441
	400 kW Holzhackschn.** 31 €/Sm³	7.645	8.700	9.293	9.792
	750 kW Anthrazit 216 €/t	3.878	4.274	4.432	4.535

^{*} Unter Berücksichtigung der Wärmeverluste des Pufferspeichers Holzhackschnitzel- und Anthrazitfeuerung ausgeschaltet von Mitte 22. Woche bis Mitte 38. Woche

^{**} Hackschnitzel: G30, W<20, Nadelholz ohne Rinde


Einsparung Wärmekosten durch Pufferspeicher (€/a ohne MwSt.)*

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a

Spitzenlast	Grundlast	Volumen Pufferspeicher (m³)			
		50	100	150	200
Heizöl EL 65 ct/l	400 kW Abwärme Flat	12.902	0 <mark>15</mark> → 14.917	16.214	89 → 17.303
	400 kW Abwärme 2,0 ct/kWh	9.188	.63 → 10.451	11.191	38 → 11.779

Spitzenlast	Grundlast	Volumen Pufferspeicher (m³)			
		50	100	150	200
Anthrazit 216 €/t	400 kW Abwärme Flat	5.138 < 	0 <mark>2</mark> → 5.940	6.457 43	6.891
	400 kW Abwärme 2,0 ct/kWh	1.425	9 1.474	1.434	7 → 1.367

^{*} Unter Berücksichtigung der Wärmeverluste des Pufferspeichers ohne optimierte Speicherladung (Pufferspeicher ganzjährig genutzt)

Einsparung an Wärmekosten hängt außer von der Pufferspeichergröße entscheidend ab von

- Preis Grundlastwärme (ct/kWh bzw. €/Brennstoffeinheit)
- Preis Spitzenlastwärme (€/Brennstoffeinheit)

Dies sollte bei der Dimensionierung Berücksichtigung finden!

Pauschale Pufferspeicher-Auslegung in Abhängigkeit von

- Grundlastgröße, z.B. 100-130 I pro kW Grundlast oder
- Ladezeit, z.B. (kW Grundlast x 5-6 h Ladezeit) / (1,02 x 1,163 x ∆t)

führt leicht zu einer betriebswirtschaftlich ungünstigen Dimensionierung!

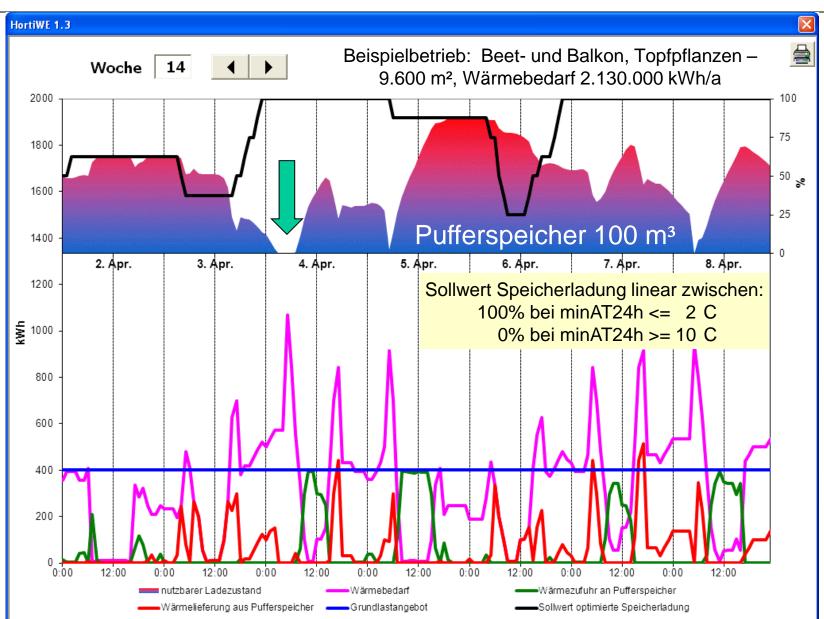
Kosten Wärmeverluste durch Pufferspeicher (€/a ohne MwSt.)

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a

		Volumen Pufferspeicher (m³)			
		50	100	150	200
	Wärmeverluste kWh/a (Puffer ganzjährig genutzt)	10.125	20.352	30.549	40.755
Kosten	400 kW Abwärme Flat	-	-	-	-
(€/a ohne MwSt.)	400 kW Abwärme 2,0 ct/kWh	203	407	611	815
	Wärmeverluste kWh/a (Grundlast ausgeschaltet Mitte 22. bis Mitte 38. KW)	7.508	15.181	22.883	30.635
Kosten (€/a ohne	400 kW Holzhackschnitzel* 31 €/Sm³	300	607	915	1.225
MwSt.)	750 kW Anthrazit 216 €/t	220	444	670	897

^{*} Hackschnitzel: G30, W<20, Nadelholz ohne Rinde

Standort Pufferspeicher: außen Wärmedämmung: 15 cm Mineralwolle, WLG 035 Pufferspeicherladung ausschließlich durch Grundlast, ohne optimierte Speicherladung



Optimierte Speicherladung in Abhängigkeit von der niedrigsten Außentemperatur der letzten 24 Stunden

Probleme:

- Kann je nach Einstellung den Nutzen des Pufferspeichers einschränken (z.B. nicht optimal geladener Pufferspeicher bei plötzlichem Kälteeinbruch oder hohen Wärmebedarfs-Spitzen in den Morgenstunden).
- Welche Einstellungen sind optimal?
- Ob durch die optimierte Speicherladung geringe Nutzeneinschränkungen aufgetreten sind, ist nur schwer erkennbar!

Optimierte Speicherladung in Abhängigkeit von der niedrigsten Außentemperatur der letzten 24 Stunden

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a Grundlast 400 kW Abwärme (2 ct/kWh), Spitzenlast Heizöl EL (65 ct/l) Pufferspeicher 100 m³, Standort außen, Wärmedämmung 15 cm Mineralwolle WLG 035

Sollwert Ladung 100% / 0% minAT24h C	Wärmeverluste Pufferspeicher kWh/a	Anteil Grundlast an Jahreswärmeerzeugung %	Jahres- Wärmekosten €/a
2 / 10	13.826	90,1	54.229
3 / 11	14.810	90,4	53.882
4 / 12	15.818	90,6	53.662
5 / 13	16.741	90,7	53.557
6 / 14	17.577	90,8	53.541
7 / 14	18.129	90,8	53.539
8 / 14	18.677	90.8	45 € 53.550
ohne Optimierung	20.352	90,8	53.584

Optimierte Speicherladung in Abhängigkeit von der niedrigsten Außentemperatur der letzten 24 Stunden

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a Grundlast 400 kW Holzhackschnitzel (31 €/Sm³), ausgeschaltet Mitte 22. bis Mitte 38. KW Spitzenlast Heizöl EL (65 ct/l)

Pufferspeicher 100 m³, Standort außen, Wärmedämmung 15 cm Mineralwolle WLG 035

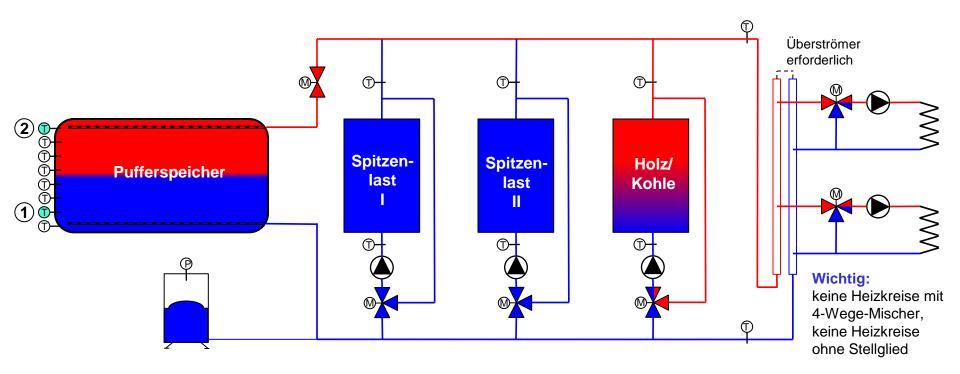
Sollwert Ladung 100% / 0% minAT24h C	Wärmeverluste Pufferspeicher kWh/a	Anteil Grundlast an Jahreswärmeerzeugung %	Jahres- Wärmekosten €/a
2/10	12.693	83,4	97.606
3 / 11	13.328	83,7	97.375
4 / 12	13.888	84,0	97.233
5 / 13	14.315	84,1	97.141
6 / 14	14.646	84,2	97.135
7 / 14	14.871	84,2	97.096
8 / 14	15.016	84,2 nur	5€ 197.091
ohne Optimierung	15.181	84,2 Einsp	97.096

Einfluss der Dämmstärke auf die Wärmeverlust-Kosten

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a

		Wärmedämmstärke Mineralwolle WLG 035 (cm) Volumen Pufferspeicher (m³)		er		
			50	100	150	200
	10	304	610	915	1.220	
Vestor	400 kW Abwärme 2,0 ct/kWh	15	203	407	611 02	815
Kosten Wärme-		20	152	305	459	612
verluste Puffer (€/a)	400 kW Holzhackschnitzel 31 €/Sm³ (Grundlast ausgeschaltet Mitte 22. bis Mitte 38. KW)	10	446	902	1.359	1.816
(E/a)		15	300	607	915	1.225
		20	226	458	690	925
	Mehrkosten 20 anstatt 15 cm Dämmstärke (€)		1.800	2.400	3.400	4.400

Standort Pufferspeicher: außen; Pufferspeicherladung ausschließlich durch Grundlast, ohne optimierte Speicherladung

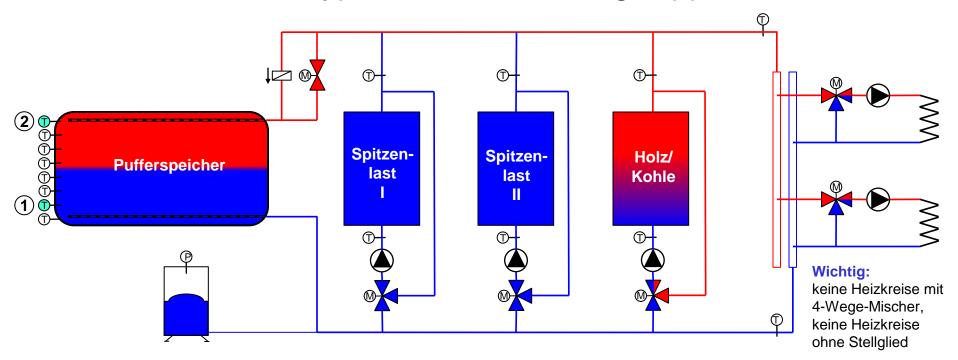

Wärmeverluste durch Pufferspeicher

Kosten der Wärmeverluste oft überschätzt.

- Optimierte Speicherladung in Abhängigkeit von der niedrigsten Außentemperatur der letzten 24 h nicht zu empfehlen.
- Gute Wärmedämmung des Pufferspeichers (20 cm Mineralwolle) lohnt sich nur bei höherem Preis für die Grundlastwärme (mind. 3 ct/kWh) und größeren Pufferspeichern.

Parallele Speicher-Einbindung mit Speicher-Absperrventil

- Grundlastkessel abschalten (Ladevorgang beenden).

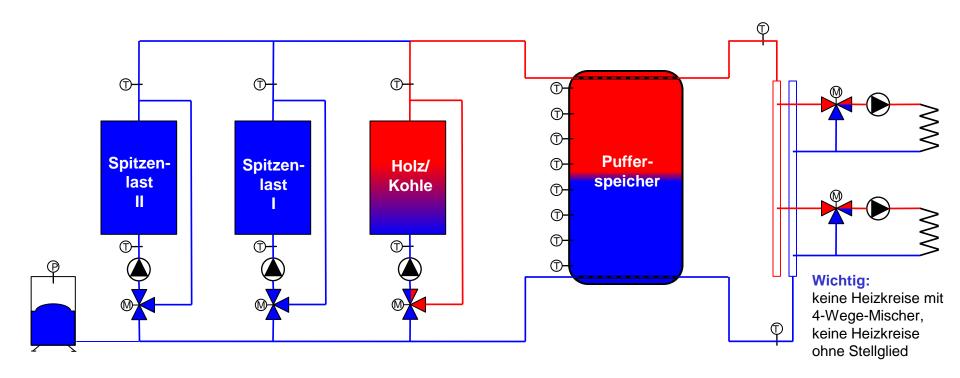

 Speicher-Absperrventil bleibt geöffnet (hydraulischer Ausgleich, Aufnahme überschüssiger Wärme in den Speicher).
- 2 Spitzenlastkessel zuschalten, Speicher-Absperrventil schließen (Verhinderung Speicherladung durch Spitzenlastkessel). Absperrventil wird wieder geöffnet, sobald Spitzenlastkessel abschalten.

Einfaches Speichermanagement über 2-Punkt-Regelungen realisierbar.

Achtung: Gleitendes "Abfahren" des Glutbettes nicht über 2-Punkt-Regelungen möglich.

Parallele Speicher-Einbindung mit Speicher-Absperrventil und Bypass mit Rückschlagklappe

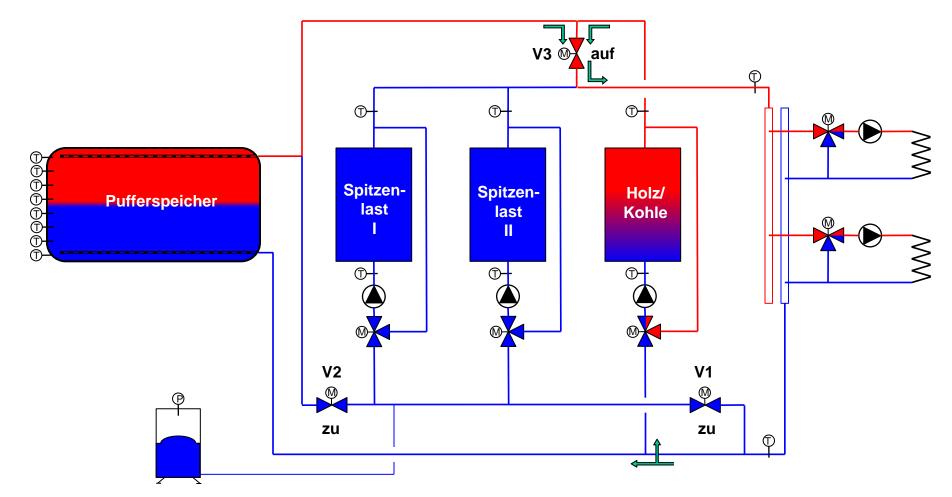
Vorteil: Auch bei Betrieb der Spitzenlastkessel:


- hydraulischer Ausgleich über Pufferspeicher (kein Überströmer am Verteiler erforderlich)
- Aufnahme überschüssiger Wärme in den Speicher (wichtig bei Spitzenlastkesseln mit hoher Grundmodulation)

Nachteil: Die Haupt-VL-Temperatur muss immer größer oder gleich Pufferladetemperatur sein, um die Speicherschichtung nicht zu zerstören.

Dadurch entsteht bei Betrieb der Spitzenlastkessel mehr Überschusswärme, die zwar in den Pufferspeicher geladen wird, den Nutzen des Speichers aber geringfügig reduziert.

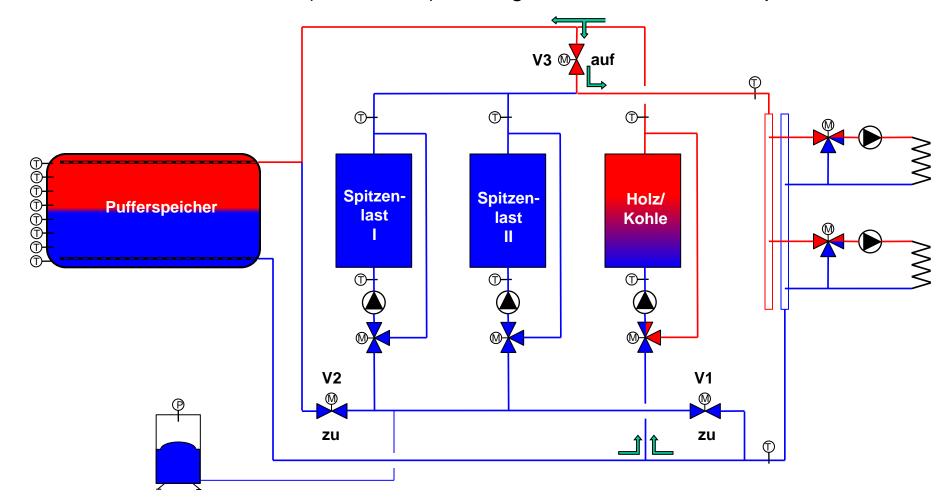
Pufferspeicher als hydraulische Weiche


Steuerung der Kessel nach Ladezustand des Pufferspeichers.

Vorteile: - optimaler hydraulischer Ausgleich

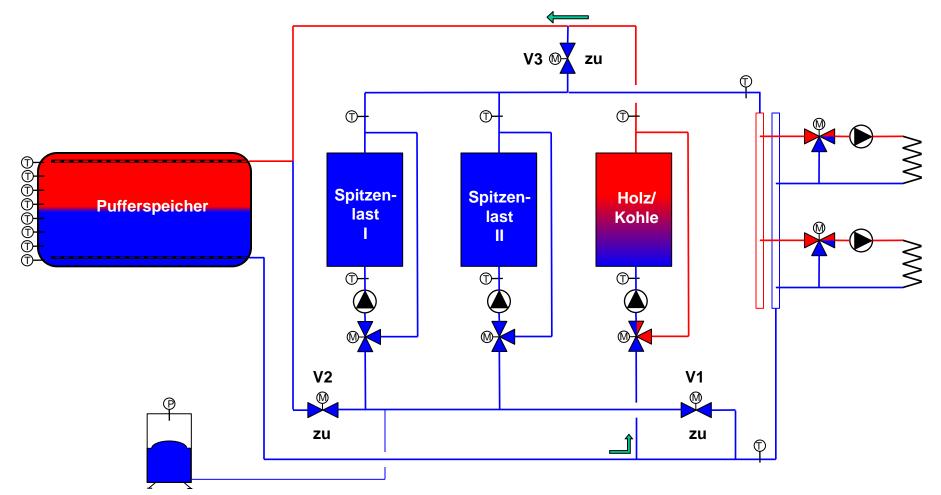
R.A.S.S. (RAM.Alternative.Speicher.Steuerung)*

1. Heizkreise werden durch Grundlastkessel (Holz/Kohle) + Speicher versorgt

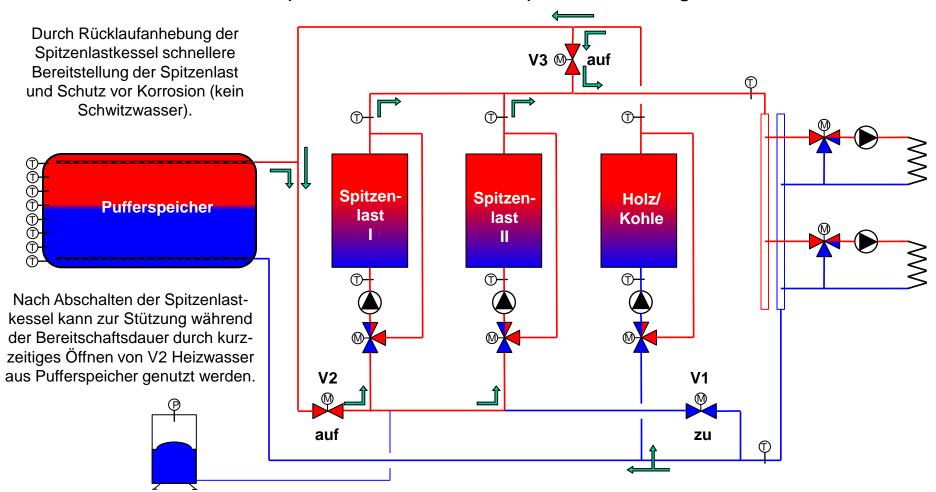


^{*} Alleinvertriebsrechte Hans van Bebber Heizungsbau GmbH & Co. KG, Straelen, und RAM GmbH Mess- und Regeltechnik, Herrsching

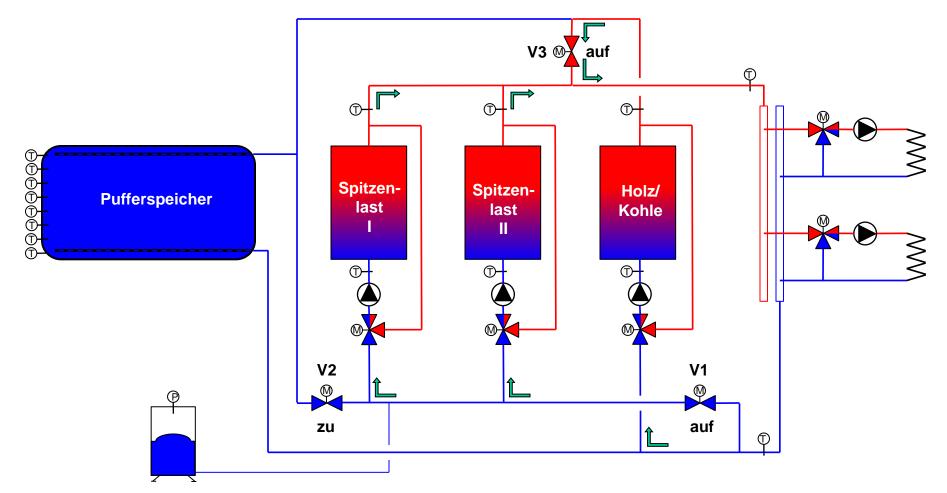
R.A.S.S. (RAM.Alternative.Speicher.Steuerung)*


2. Grundlastkessel (Holz/Kohle) versorgt Heizkreise und lädt Speicher

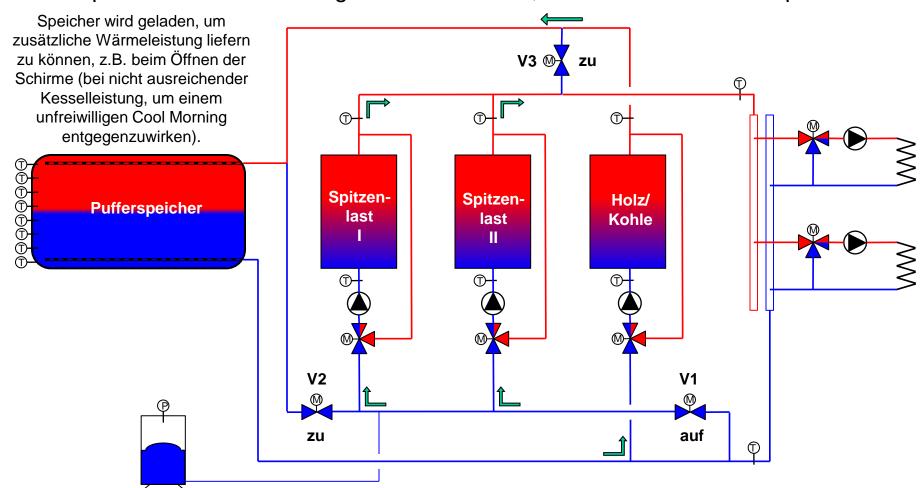
^{*} Alleinvertriebsrechte Hans van Bebber Heizungsbau GmbH & Co. KG, Straelen, und RAM GmbH Mess- und Regeltechnik, Herrsching


3. Grundlastkessel (Holz/Kohle) lädt Speicher

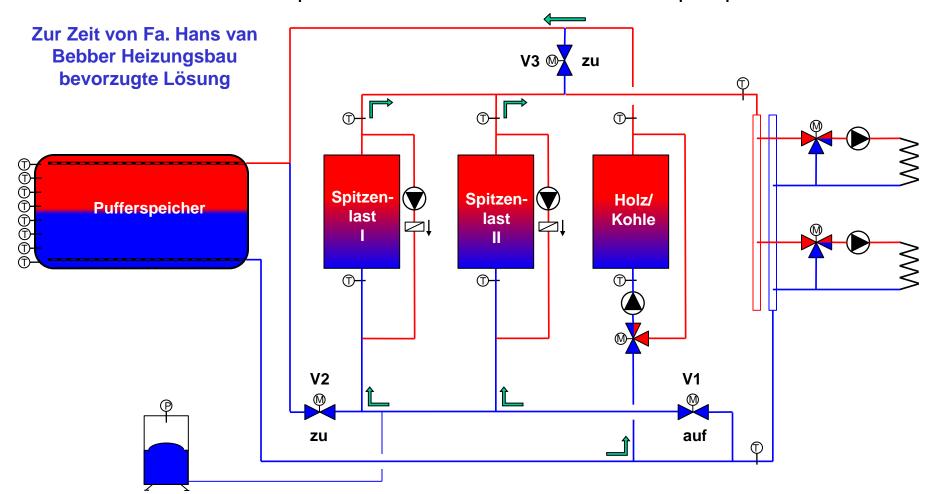
^{*} Alleinvertriebsrechte Hans van Bebber Heizungsbau GmbH & Co. KG, Straelen, und RAM GmbH Mess- und Regeltechnik, Herrsching


4. Grundlastkessel, Spitzenlastkessel und Speicher versorgen die Heizkreise

^{*} Alleinvertriebsrechte Hans van Bebber Heizungsbau GmbH & Co. KG, Straelen, und RAM GmbH Mess- und Regeltechnik, Herrsching


5. Grundlastkessel und Spitzenlastkessel versorgen die Heizkreise (Speicher leer)

^{*} Alleinvertriebsrechte Hans van Bebber Heizungsbau GmbH & Co. KG, Straelen, und RAM GmbH Mess- und Regeltechnik, Herrsching


6. Spitzenlastkessel versorgen die Heizkreise, Grundlastkessel lädt Speicher

^{*} Alleinvertriebsrechte Hans van Bebber Heizungsbau GmbH & Co. KG, Straelen, und RAM GmbH Mess- und Regeltechnik, Herrsching

Alternativ: Spitzenlastkessel mit Kesselbeimischpumpe

^{*} Alleinvertriebsrechte Hans van Bebber Heizungsbau GmbH & Co. KG, Straelen, und RAM GmbH Mess- und Regeltechnik, Herrsching

Hydraulische Einbindung und Speichermanagement

- parallele Speicher-Einbindung mit Speicher-Absperrventil:
 - bewährte Lösung
- parallele Speicher-Einbindung mit Speicher-Absperrventil und Bypass mit Rückschlagklappe:
 - bei Spitzenlastkesseln mit hoher Grundmodulation
- Pufferspeicher als hydraulische Weiche:
 - einfacher Aufbau
 - optimaler hydraulischer Ausgleich
- R.A.S.S. (RAM.Alternative.Speicher.Steuerung):
 - bietet viele Möglichkeiten, ist andererseits aber auch komplex, aufwendig und teurer
 - nur über RAM-Regelcomputer

Investitionskosten Pufferspeicher (Beispiele)

Pufferspeicher neu,

liegend, mit TÜV-Prüfung,
Isolation: 200 mm Mineralwolle,
Blechummantelung,
Abstandshalter für Isolation,
Sicherheitsorgane,
7 Stück Temperatursensoren,
inkl. Transport, Aufstellung

50 m³ ⇒ 4.000 € 100 m³ ⇒ 6.000 €

200 m³

⇒ 37.000 €

⇒ 51.000 €

⇒ 64.000 €

⇒ 12.000 €

Thomas Daniel, Landwirtschaftskammer S.-H., Abteilung Gartenbau

abhängig von Tankform und

Fundamente

Anzahl Füße

gebrauchte Pufferspeicher

Pufferspeicher gebraucht,

liegend,

Isolation: 100 mm Mineralwolle,

Blechummantelung,

Sicherheitsorgane (neu),

7 Stück Temperatursensoren (neu),

inkl. Transport, Aufstellung

Nachisolation

100 m³

⇒ 20.000 €

200 m³

⇒ 30.000 €

zu beachten:

Öllagerbehälter sind nur für drucklose Lagerung ausgelegt.

Der Einsatz als Druckbehälter in Form eines Pufferspeichers ist nicht zulässig.

Investitionskosten Pufferspeicher (Beispiele)

Druckhaltung und Entgasung

 50 m^3

⇒ 15.000 €

100 m³

⇒ 17.000 €

200 m³

⇒ 20.000 €

10.000 - 12.000 €

Hydraulische Einbindung,

Mischkreis oder

frequenzgesteuerte Pumpe,

Schmutzfänger,

Handabsperrklappen,

Motorklappe, Rückschlagventil,

Verrohrung, Isolation

Steuerung / Speichermanagement:

 über zwei Zweipunktregler (Speicherladung stoppen, Spitzenlastkessel zuschalten)

⇒ 500 €

Integration in vorhandene RAM-Regelcomputeranlage

⇒ 2.000 €

Investitionskosten Pufferspeicher insgesamt (Beispiele)

	50 m³	100 m³	200 m³
Pufferspeicher neu	37.000	51.000	64.000
Fundamente	4.000	6.000	12.000
Druckhaltung und Entgasung	15.000	17.000	20.000
Hydraulische Einbindung	10.000	11.000	12.000
Steuerung / Speichermanagement (2 x Zweipunktregler)	500	500	500
insgesamt	66.500	85.500	108.500

Gegenüberstellung Investitionskosten und Einsparung Wärmekosten durch Pufferspeicher

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a

			Volumen Pufferspeicher (m³)		her (m³)
			50	100	200
Investitions-	s- (mit Pufferspeicher neu)		66.500	85.500	108.500
kosten (€ ohne MwSt.)	(mit Pufferspeicher gebraucht)		-	54.500	74.500
	Spitzenlast	Grundlast			
Einsparungen Wärmekosten (€/a ohne MwSt.)*	Heizöl EL 65 ct/l	400 kW Abwärme Flat	12.902		386 → 17.303
		400 kW Abwärme 2,0 ct/kWh	9.188	10.451 (3 <mark>28</mark> → 11.779
		400 kW Holzhackschn.** 31 €/Sm³	5.642	6.354	61 → 7.015
		750 kW Anthrazit 216 €/t	3.038	3.302	3.406

^{*} Unter Berücksichtigung der Wärmeverluste des Pufferspeichers ** Hackschnitzel: G30, W<20, Nadelholz ohne Rinde Holzhackschnitzel- und Anthrazitfeuerung ausgeschaltet von Mitte 22. Woche bis Mitte 38. Woche

Alle Berechnungen mit HortiWE 1.3, auf Grundlage einer Hortex-Simulation.

Gegenüberstellung Investitionskosten und Einsparung Wärmekosten durch Pufferspeicher

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a

			Volumen Pufferspeicher (m³)		her (m³)
			50	100	200
Investitions- (mit Pufferspeicher neu)		66.500	85.500	108.500	
kosten (€ ohne MwSt.)	(mit Pufferspeicher gebraucht)		-	54.500	74.500
	Spitzenlast	Grundlast			
Einsparungen Wärmekosten (€/a ohne MwSt.)*	Heizöl EL 75 ct/l	400 kW Abwärme Flat	14.887	17.212	19.965
		400 kW Abwärme 2,0 ct/kWh	11.173	12.746 (95 → 14.441
		400 kW Holzhackschn.** 31 €/Sm³	7.645	8.700	9.792
		750 kW Anthrazit 216 €/t	3.878	4.274	4.535

^{*} Unter Berücksichtigung der Wärmeverluste des Pufferspeichers ** Hackschnitzel: G30, W<20, Nadelholz ohne Rinde Holzhackschnitzel- und Anthrazitfeuerung ausgeschaltet von Mitte 22. Woche bis Mitte 38. Woche

Alle Berechnungen mit HortiWE 1.3, auf Grundlage einer Hortex-Simulation.

Gegenüberstellung Investitionskosten und Einsparung Wärmekosten durch Pufferspeicher

Beispielbetrieb: Beet- und Balkon, Topfpflanzen – 9.600 m², Wärmebedarf 2.130.000 kWh/a

			Volumen Pufferspeicher (m³)		
			50	100	200
Investitions- kosten (€ ohne MwSt.)	(mit	Pufferspeicher neu)	66.500	85.500	108.500
	(mit Pufferspeicher gebraucht)		-	54.500	74.500
	Spitzenlast	Grundlast			
Einsparungen Wärmekosten (€/a ohne MwSt.)*	Anthrazit	400 kW Abwärme Flat	5.138	5.940 <	
	216 €/t	400 kW Abwärme 2,0 ct/kWh	1.425	1.474	1.367

^{*} Unter Berücksichtigung der Wärmeverluste des Pufferspeichers Pufferspeicherladung ausschließlich durch Grundlast, ohne optimierte Speicherladung (Pufferspeicher ganzjährig genutzt)

Fazit

- Ein Pufferspeicher arbeitet am effektivsten bei ausgeprägtem Tag- / Nacht-Rhythmus des Ladens / Entladens. Dafür reichen bereits relativ kleine Pufferspeichergrößen aus.
- Bei groß dimensionierter Grundlast ist der Nutzen des Pufferspeichers deutlich geringer!
- Die Einsparung an Wärmekosten hängt außer von der Pufferspeichergröße entscheidend vom Preis der Grundlastwärme und vom Preis der Spitzenlastwärme ab. Dies sollte bei der Dimensionierung Berücksichtigung finden!
- Die optimale Pufferspeichergröße sollte grundsätzlich durch Auslegungs- und Wirtschaftlichkeitsberechnungen betriebsindividuell ermittelt werden.

